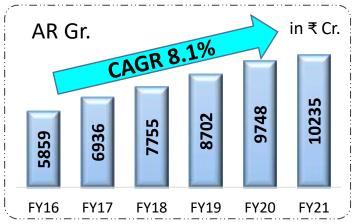
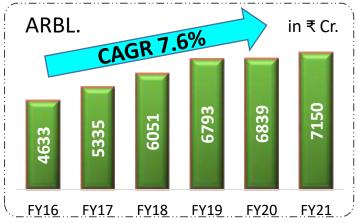


Amara Raja Batteries Limited, Chittoor

WELCOME

National Award for 2021 Excellence in Energy Management 2021


Team members:


Subhash M, General Manager & HOD - Centre Of Excellence
Vinaya Sagar K.B., Head - Energy management
Kumara Swamy K – DGM, Power Distribution

Amara Raja- A Clear differentiator

Product Brands

Amara Raja Batteries Limited

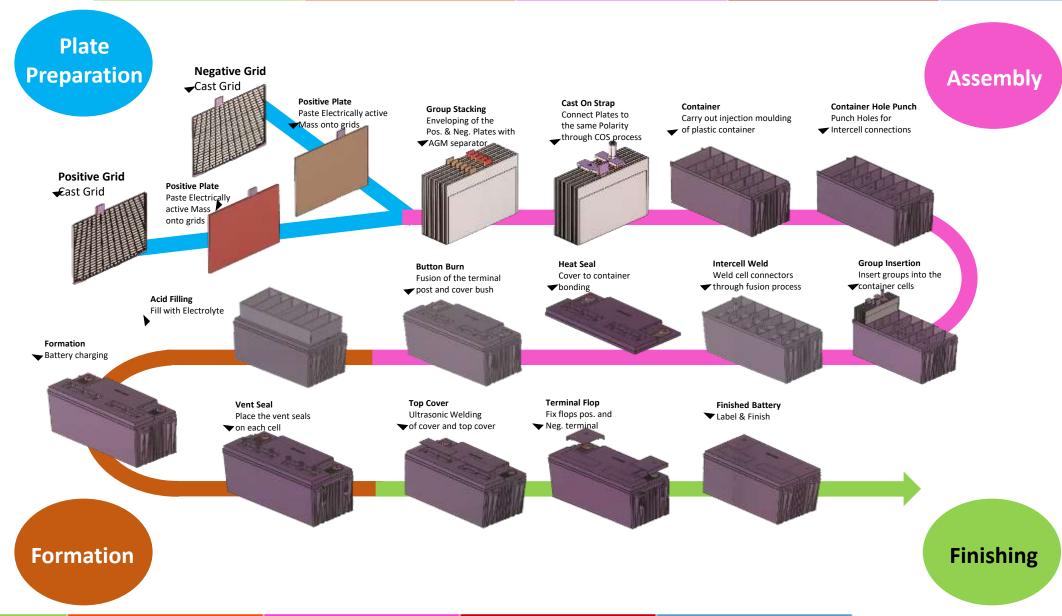
Ownership:

Incorporated in 1985 & Public Limited Company Est. in 1991

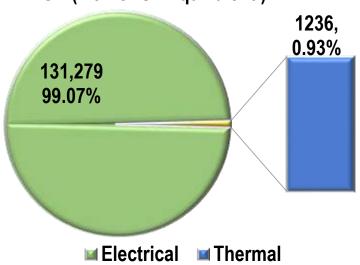
Manufacturing Locations:

- 6 Plants in 200 Acres at Tirupati, Rural place in INDIA
- Amara Raja Growth Corridor with 5 plants in 500Acres at Chittoor, AP
- Providing Employment to nearly 15000 people directly
- · The largest single manufacturing facility in Indian ocean rim

Our Innovative dynamism:


- Brought VRLA technology in two wheeler to India
- Exclusive Vendor to OE premium segment Vehicles

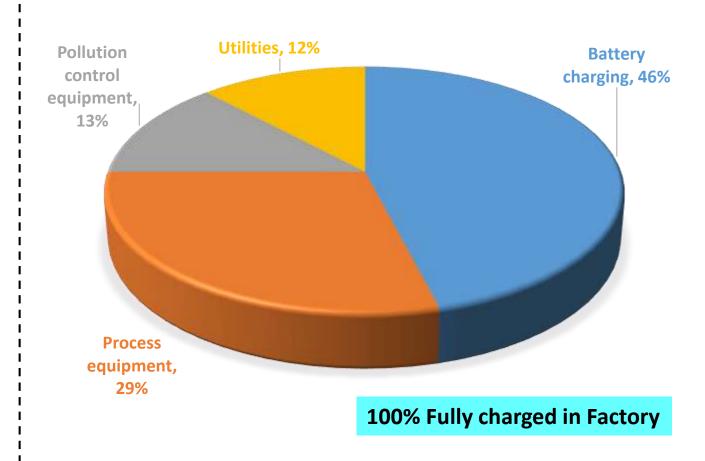
Battery Manufacturing Flow Diagram



Energy Consumption Overview

Energy Sources

Plant Energy Consumption in TOE (Ton of Oil Equivalent)

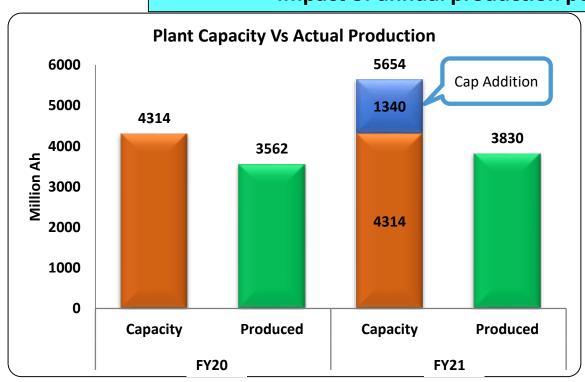

Electrical

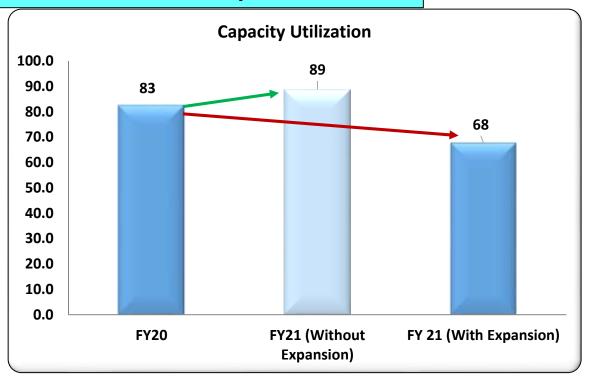
- 152.7Mn Units
- 1,31,279 TOE

Thermal

• 1,236TOE (HSD, LPG, Acetylene)

Energy Consumption in Battery Manufacturing ENERGY CONSUMPTION IN BATTERY MANUFACTURING





Impact of Covid-19

Impact of annual production performance: Reduced by 15%

- 1. Plant capacity increased by 31% due to expansions
- 2. Production increased by 7.5% over FY 20
- 3. Capacity utilization increased from 83 % to 89 % without expansion
- 4. With expansions capacity utilization reduced from 83% to 68% due to Covid 19 related issues.

Amara Raja Model of Energy Conservation

EnCon projects:

- Lead pot size Optimization
- Improved Heater Controls
- Roof top solar systems
- LED Lighting across the plants
- Electrical Vibrators in place of Pneumatics
- Replacing AODD pumps with Electrical pumps
- High efficiency Water pumps with feedback mechanism in WRS and Cooling towers
- Replacement of normal motors with IE3\4 motors.
- Optimum utilization of Compressor air
- Reduction of Skin temperature.
- Heat recovery from Compressors
- Auto descaling of chillers.
- IR Heaters for Flash dryers.

Iback mechanism in 3\4 motors. Energy Efficiency

Capacity Utilization:

- Reduce number of Restarts in machines in one month.
- Trail run energy to be capitalized till 50% capacity is achieved.

Off Peak load scheduling:

- Operate the Acid Chillers during OFF peak hrs and store for Peak hour consumption.
- Operate the water pumps to fill the overhead tanks.

Best Practices

Capacity

utilization

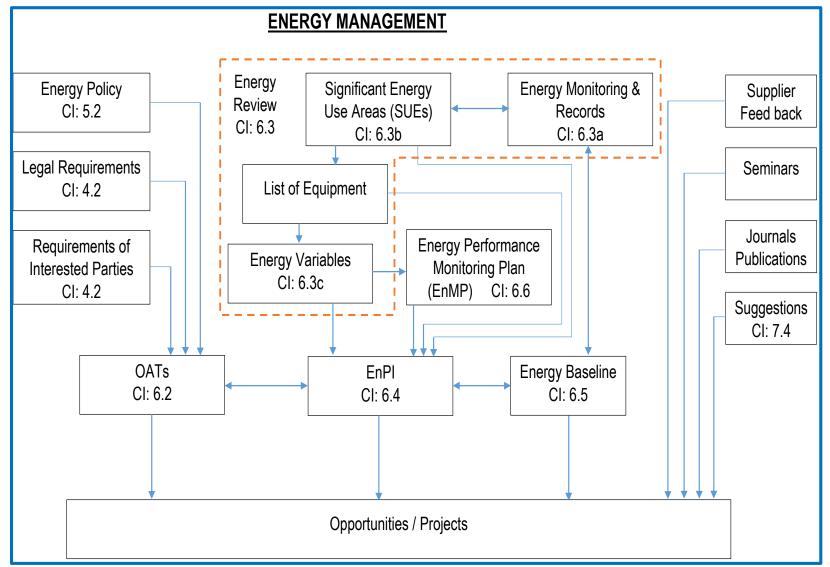
Formation Rework process in OFF Peak hours

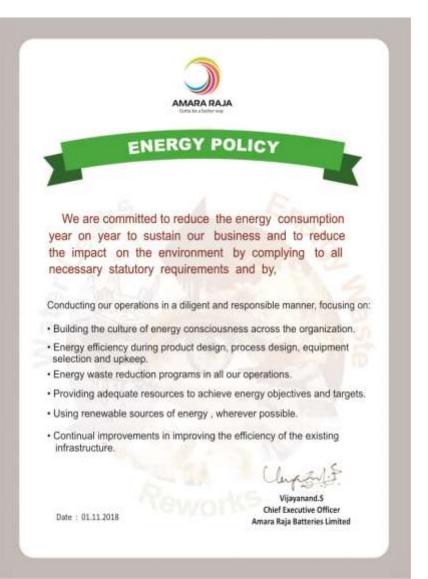
Best Practices:

- Always run both reactors connected to single lead pot
- Switch off Flash dryer during pasting machine stoppages.
- Periodical checking of healthiness of damper controls
- Run lead pots at lower band of specification.
- SCR Parameters fine tuning in COS lead pot.
- Use all circuits in a charger.
- Avoid manual bypassing of WRS water.
- Switch off lights when not required..

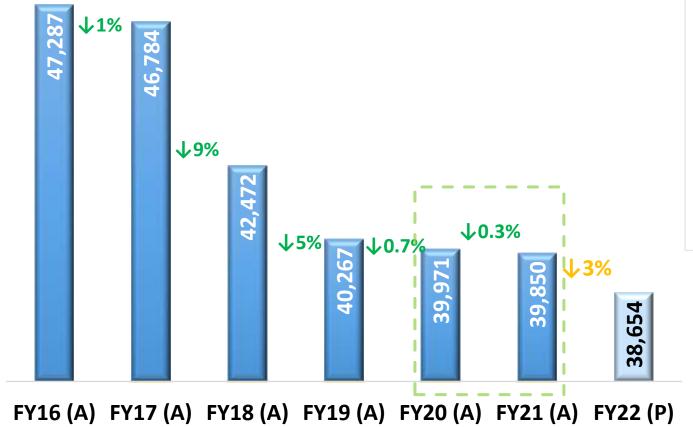
Technology Upgradation:

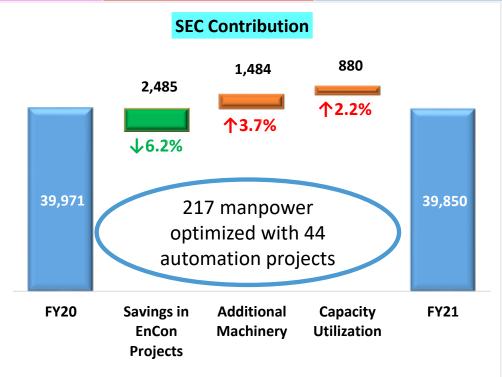
Technology


Upgradation


- Hot Water Based Heating system for Ovens
- IR heaters For Flash Driers
- Active Harmonic Filters
- LED Lighting across the plants
- Thermal Energy Storage
- Brush Less DC Fans for AHUs & FA systems
- Auto Descaling systems of Chillers

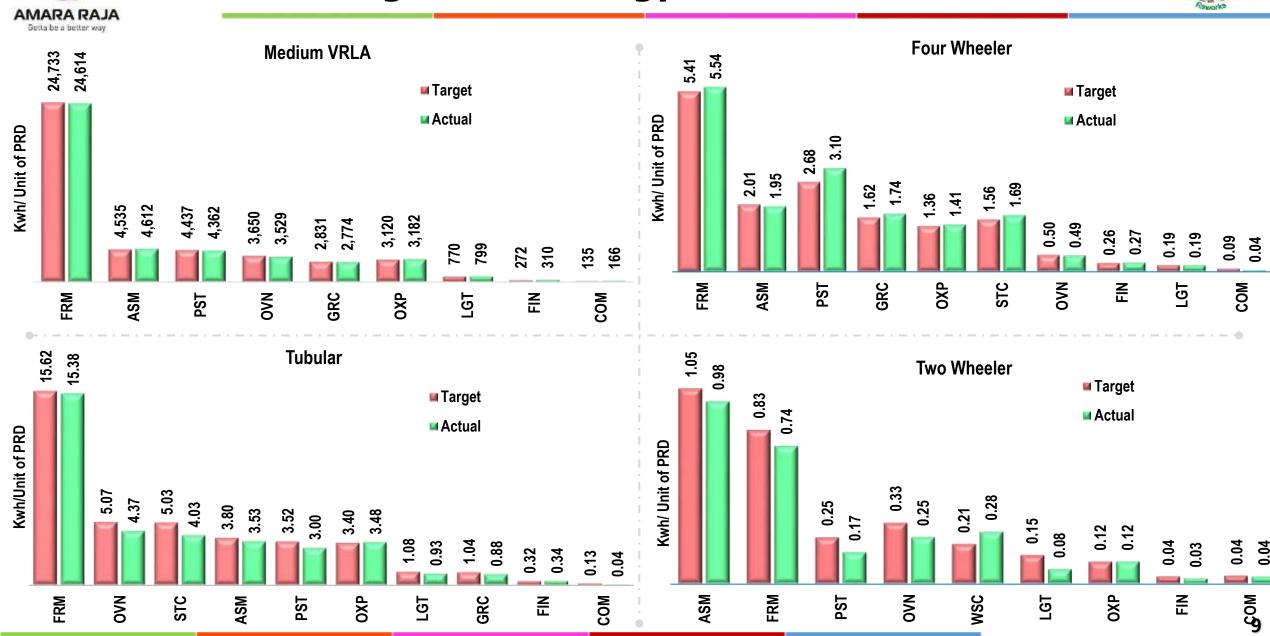
ISO 50001:2018 Methodology for Energy Efficiency




kWh Per Specific unit

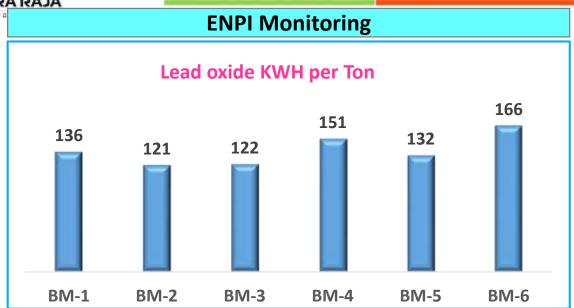
Specific Energy Consumption

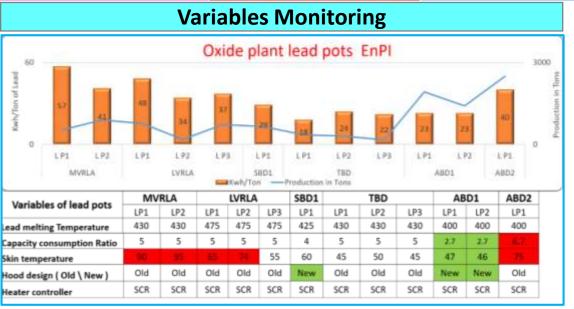
Sp. Energy Consumption per Specific unit

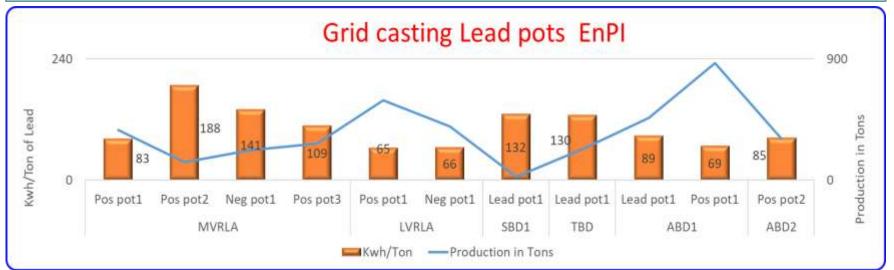

SP. Energy Reduction

FY 16-21 :- 15.7 %

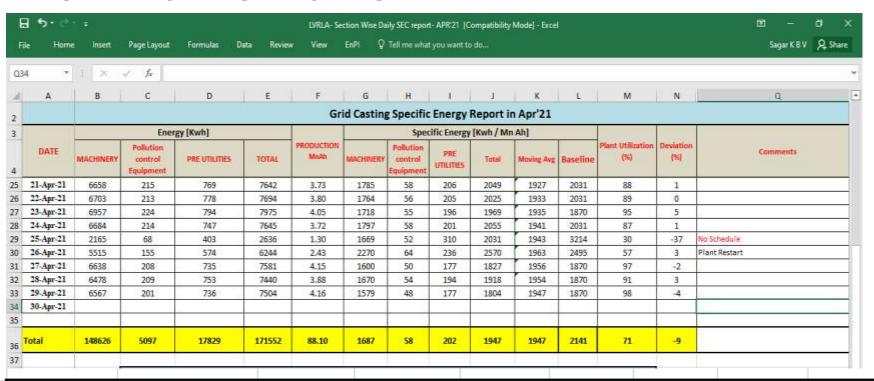
SEC of Significant Energy Use Areas






ISO 50001:2018 Methodology for Energy Monitoring

Interplant Comparison of SEC of Equipment



ISO 50001:2018 Methodology for Energy Monitoring

Daily SEC Reporting comparing with baseline



	Base Line Energy values for different Capacity utilization									
(Section) Kwh/MnAh										
Sl. No.	Rev Date	Production Capacity	90-100 %	80-89 %	70-79 %	60-69 %	50-59 %	40-49 %	30-39 %	< 30 %
1	Rev-0(01.05.19)	4.44	2363	2498	2695	2974	3116	3560	3728	3959
2	Rev-1(01.04.20)	4.44	1962	2102	2242	2403	2606	2741	2930	3024
3	Rev-2(01.04.21)	4.44	1870	2031	2141	2342	2495	2954	3214	3569

Energy Benchmarking

Data Source: Annual reports of 2018-19

Further Focusing on..

Efficient Curing profile

Solar PV Panels

Quick Recharge system

Punched Grid Technology Heat Recovery system

Optimized
Formation process

Lead Pot design modification

HOT

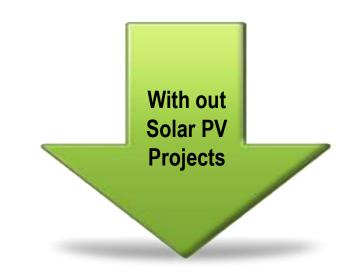
Ongoing Energy saving projects for FY'22

List of Ongoing Energy saving projects - FY' 22 Amara Raja Batteries Ltd - Chittoor

S No	Title of project	Annual savings in Kwh	Annual savings in Mn Rs	Investment in Mn Rs	Pay back in months
1	Solar installation in ASG & ARGC PV panels skylights 3.93 MW	5,733,728	34.40	186.50	65
2	Replacement of Centrifugal blower with BLDC fans in Fresh Air systems	1,201,472	7.21	13.40	22
3	Replace AODD pumps with energy efficient centrifugal pumps	126,000	0.76	1.18	19
4	Improved heater controls for lead pots	229,800	1.38	1.21	11
5	Install direct driven EC motors for charger room AHU's (BLDC)	917,390	5.50	10.72	23
6	IR Heaters for pasting flash dryer	212,000	1.27	0.94	9
7	Install Auto descaling system for water chillers	177,650	1.07	2.18	25
8	Skin temperature reduction in lead Pot	123,400	0.74	0.95	15
9	Replace existing conventional lamps with LED	218,140	1.31	3.10	28
10	Replace with direct coupling in place of blower belts	341,512	2.05	2.46	14
11	Elimination of washing tunnel blowers & provide pneumatic dampers in DE sys.	129,709	0.78	0.33	5
12	Provide Occupancy sensors for central maintenance lighting	6,300	0.04	0.02	6

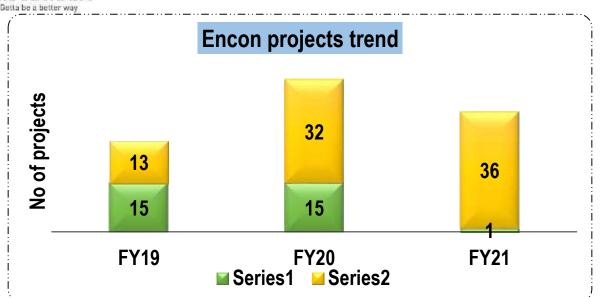
Ongoing Energy saving projects for FY'22

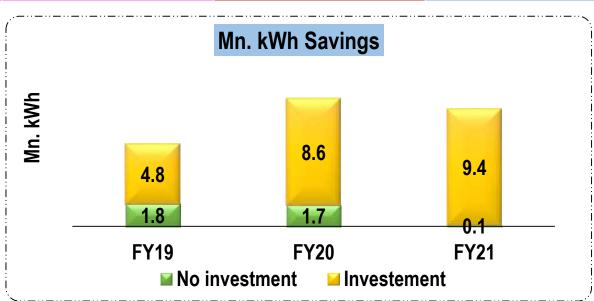
List of Ongoing Energy saving projects - FY' 22 Amara Raja Batteries Ltd - Chittoor

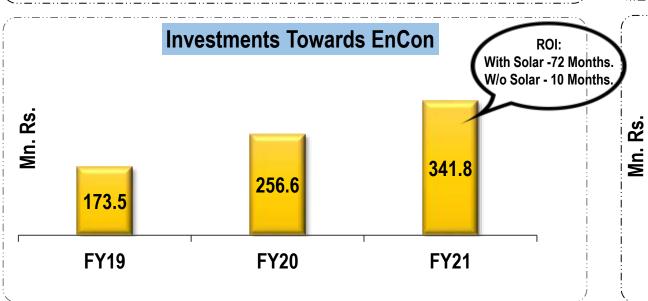

S No	Title of project	Annual savings in Kwh	Annual savings in Mn Rs	Investment in Mn Rs	Pay back in months
13	Install Compressor Air Consumption monitoring Kit	180,000	1.08	0.61	7
14	Replace trans vector nozzle in place of compressor air cleaning applications	12,240	0.07	0.06	10
15	Replacement of cooling tower fan blades with Epoxy glass coated FRP blades	33,480	0.20	0.125	7
16	Install Fan less cooling tower in MVRLA Grid casting cooling tower	84,000	0.50	0.50	12
17	Ah input reduction in MVRAL formation chargers	618,400	3.71	0	-
18	Formation Chargers replacement with IGBT chargers (60 No's.) in MVRLA	588,400	3.53	13.9	47
19	Provide IFC control system for Air compressors in TBD	210,000	1.26	1.1	11
20	Capacitor banks added in SDB level for Maintain Power factor unity in TBD	90,000	0.54	0.9	21
21	Provide Exhaust for compressor room in TBD	70,000	0.42	0.4	10
22	Replacement of Air compressor screw element with Energy Efficient motor in TBD	231,250	1.39	2.4	20
	Total for 2021-22	1,04,28,453	63	406	78

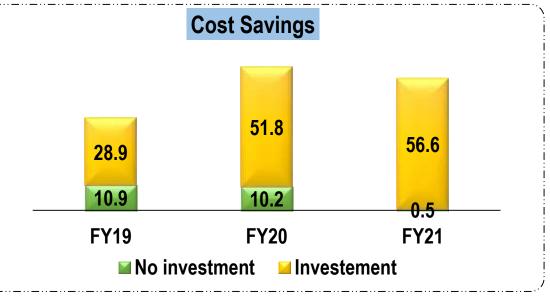
Statistics on EnCon Projects

Year	No of Projects	Investment (in Mn)	Savings (in Mn)	Payback (in Years)
FY19	28	173.5	39.8	4.4
FY20	47	256.65	62.01	4.1
FY21	37	341.85	57.10	6.0


With Solar PV Projects


Year	No of Projects	Investment (in Mn)	Savings (in Mn)	Payback (in Years)
FY19	27	3.51	17.9	0.2
FY20	44	9.65	29.23	0.3
FY21	34	11.85	13.87	0.8




Statistics on EnCon Projects

Energy Saving Projects

1. Replacement of Centrifugal blower with BLDC fans.

Centrifugal blowers are replaced with BLDC fans in AHUs for energy saving

Energy savings/Annum: Rs 0.50 Mn. HD: 1.32 Mn

After

2. Reduction of skin temperature.

Skin temperature of lead melting pot is reduced from 120°c to 55°c by provide insulation (Nano gel blanket)

Energy savings/Annum: Rs 0.63 Mn. HD: 0.82 Mn

3. Elimination of cooling tower fan

Replace the conventional cooling tower with fan less cooling tower.

Energy savings/Annum: Rs 0.28 Mn. HD: 1.2 Mn

Energy Saving Projects

Before After

4. Auto descaling of condenser tubes in water chillers

Provided auto descaling system for cleaning of tubes in condensers in water chillers to reduce the energy consumption.

Energy savings/Annum: Rs 0.53 Mn. HD: 1.10 Mn

5. Replace pneumatic vibrators to electrical vibrators

Replaced pneumatically operated vibrators with electrical vibrators in pasting day tank.

Energy savings/Annum: Rs 0.16 Mn. HD: 0.58 Mn

6. Thyristor controls for Heaters.

Replace Thyristor control SCR in place of contactor for PDC machine lead pots.

Energy savings/Annum: Rs 0.20 Mn. HD: 0.62 Mn

Energy Saving Projects

7. Direct coupling in place of blower belt.

Replace with Direct coupling in place of blower belt for 13 ovens

Energy savings/Annum: Rs 0.34 Mn. HD: 2.0 Mn

Before

After

8. Replaced AODD pumps with IE3 pumps

Replace the Air operated double diaphragm pumps with Electrically operated UHMW-PE semi opened impeller pumps

Energy savings/ Annum: Rs 0.86 Mn. HD: 1.6 Mn

9. Provide VFD for Water Recirculation System (WRS) pumps

Provided VFD in Formation WRS hot well & cold well pumps

with feedback mechanism

Energy savings/Annum: Rs 1.25 Mn. HD: 2.51 Mn

Strategic Plan-Reduction of compressor load by 30%

Ultra sonic compressed air leak Detection-15%

The compressed air leak survey and cost estimation for losses.

Exhaust & Support operations-2%

- 1.Float based drain valves
- 2.EE nozzles
- 3.ES controller

Pneumatic vibrators replacement- 1%

Pneumatically operated vibrators replacement with electrical vibrators

Size Optimization of Pneumatic Cylinder-5%

Reduction of the pneumatic cylinder Size without compromising application.

Intelligent flow controller (IFC)-7%

IFC isolates the compressors from demand side fluctuations.

AODD Pumps replacement- 1%

Replacement of the AODD pumps with the Electrical operated PP pumps

Pulsation cycle optimization-1%

Dust collection application pulsation cycle optimization by feasibility studies.

Elimination of compressed air application-1%

High volume blower is implemented with low pressure cleaning applications.

Methodology

Cylinder Bore Before: Ø 80 mm

Force Required

Purpose of operation

Static operation

- (i) Calculate Load to be moved(m)= 63 Kg
- (ii) Cylinder Force required = m*9.81 = 618 N

Load factor n

0.7 or less (70% or less)

00% or less

150% or less

Bore Selection

- (i) Coinciding point of Load, Force, load factor, Operating pressure & bore gives the suitable cylinder size.
- (ii) Required bore is of 50 mm

Cylinder Bore After: Ø 50 mm

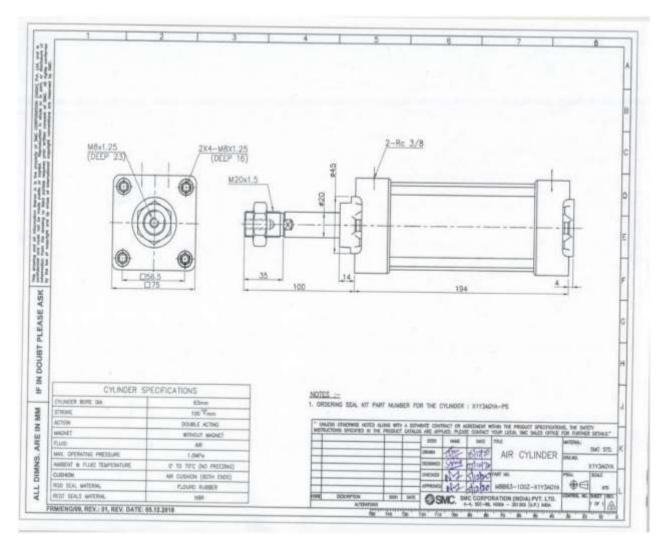

Air Consumption

- (i) The Intersection point of Stroke vs Bore vs operating pressure vs consumption gives per cycle.
- (ii) The applicable consumption is 0.04cfm

Load Factor

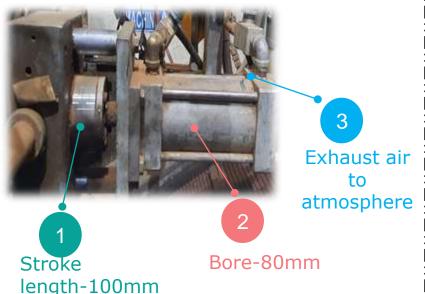
- (i) Select Load factor based on type of operation.
- (ii) Load factor for Clamping operation is 0.7

Stroke length& Piston speed


- (i) Look graph for Load vs Stroke speed(mm/s) to get stroke end impact.
- (ii) Desired Stroke length-80mm (Constraint of 100mm/s)

Proposed Customized design-SMC

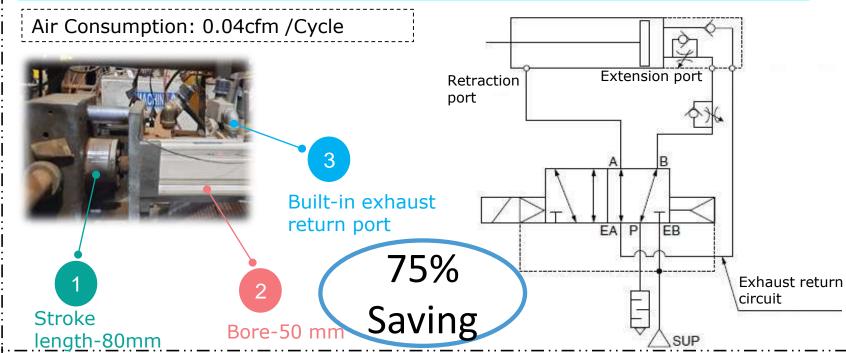
CFT Approvals


	Amara Raja Batteries Limited									
		REQU	IEST F	OR 4M	CHANG	E				
REQUESTION BY	Tirumala Chengalah	Line no	1,2,3,4&5	Type	Cylinder Bor	e optimization	DATE	12/5/2021		
MODEL	MBB63-100Z- X13AGYA	PART NO	N		PART	NAME	Pneumatic cylin	nder		
CLASSIF	ICATION	MATERIAL		MACHINE		MAN		OTHERS		
SUBJECT			A. J. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			VIII LANGUE	ing cylinder of ma			
CURRENT STA	TUS DETAILS	t scenario, th	ne cylinder is	operating with	h 80mm bore an	d 100mm stroke i	ength for clamping			
SUGGESTION S	TATUS DETAILS	The propo	osed method	is optimiza	tion of cylinder	bore to 63mm i	without compromis	sing the productivity.		
BENFITS		Reduction	n of compres	ssed air cons	sumption by 1.	4 CFM per cycle				
I REQUEST YO	U TO APPROVE THE '4N	CHANGE: AND	PLEASE O	GIVE US AP	PROVAL FOR F	INSHING SERV	L NUMBER TRACE	EBILITY SYSTEM		
Request Acc	epted Reque	st Rejected	DVAL	Section I	ncharge	Prod. HOD	Mnt. HOD	QA HOD		
sons for Request Re	ejection:		ASBU APPROVAL	PHIL	de l	Pet mala	4 61 812	199		
			AS	12. /	5/2011 13/	esturi	1348/201	13/05/1011		

Before Condition

Air Consumption: 0.16cfm /Cycle

Benefits


No of Cylinders Replaced: 52

Investment : Rs 2,17,360/-

Energy Savings: 1,10,032KWH

Cost Savings : Rs 6,60,192/-

After condition-Air Saving Opportunity

Horizontal deployment

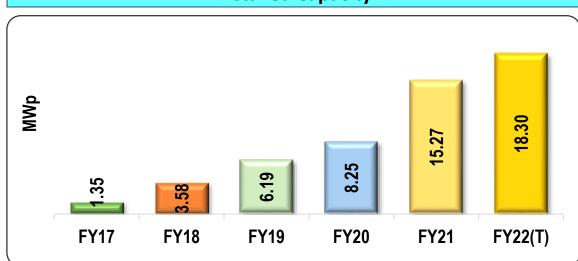
Quantity: 184

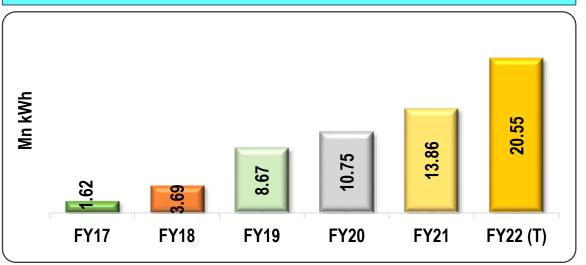
Cost Savings: Rs 3.9 Mn

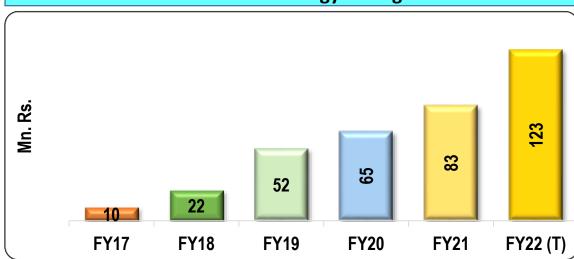
Energy Savings: 0.66 Mn Units

One of the Strategic plan to reduce the compressor energy consumption by 5%

Proposed list of Cylinders


			Actual			Recommen		mended	Before air	After air	Air	Energy		Horizonta
SI.No	Machine	Cylinder model	Bore (mm)	Stroke (mm)	Max. Available force (N)	d force (N)	Bore (mm)	Max. Available Force (N)	consumptio	consumptio n (CFM)		Savings per year kwh	savings /year @Rs.6	deployme nt (Rs.)
1	Semi group-1	CDS2B140-250J	140	250	3000	392	80	1250	1.24	0.44	6.36	9,617	57,702	923228
2	Semi group-2	CDS2F125-175	125	175	2500	392	80	1250	0.64	0.25	3.11	4,702	28,210	451356
3	Charge eye insertion	MB1Z63-UDW002- 410	63	410	600	5	50	400	0.44	0.23	1.70	2,565	15,387	738583
4	Grid Casting	100B80S	80	100	1500	618	50	900	0.16	0.04	2.67	4039	24,235	1744901
5	Half insertion	MDBD100-75Z-73L	100	75	2000	305	80	1250	0.18	0.11	0.57	855	5,129	41032
6	Full insertion	MDBWF80-125Z- M9BL	80	125	1250	196	63	600	0.16	0.11	0.42	641	3,847	30774
7	Mold releasing	MDBF80-100Z-Z3L	. 80	100	1250	181	63	600	0.12	0.08	0.35	534	3,206	25645
8	Half insertion	MDBF100-25Z-73L	100	25	2000	270	80	1250	0.11	0.06	0.35	534	3,206	25645


Renewable Energy


Installed Capacity


Power Generation

Renewable Energy Savings

Renewable Energy share in Overall Energy

Renewable Energy

Environmental Benefits:

- **CO2** Avoided per Annum = 34734 MT
- **❖** SO2 Avoided per Annum = 2316 MT

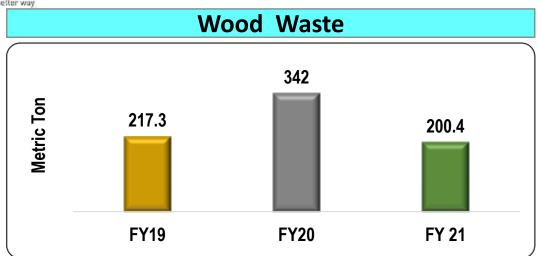
Further Course of action:

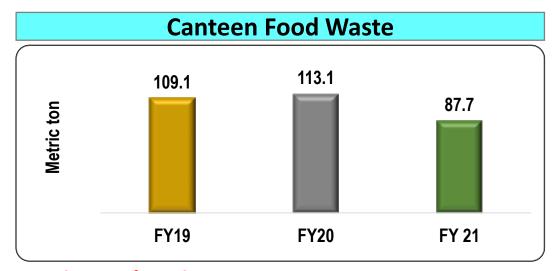
Capex approved for Off grid Solar projects for 50MWp

100% Renewable energy by FY'23

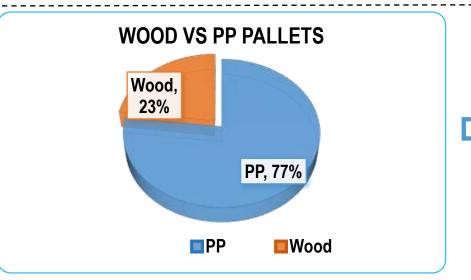
Renewable Energy – Smart Solar Monitoring

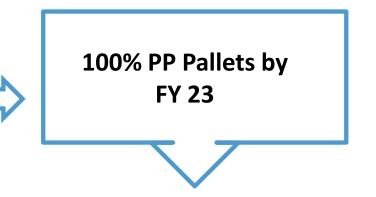
Main Objectives of Smart Solar System is to Maximize Our Solar Generation by


- Real Time Solar plant performance monitoring by string level monitoring
- > Smart demand management
- > Real-time performance ratio, CUF, Irradiance vs solar yield
- Remotely Monitor all Solar Power Plant from a Centralized Platform
- > Scheduling of O&M
- > Mobile application
- > Automatic Reports Generation and escalation



Waste Utilization & Management

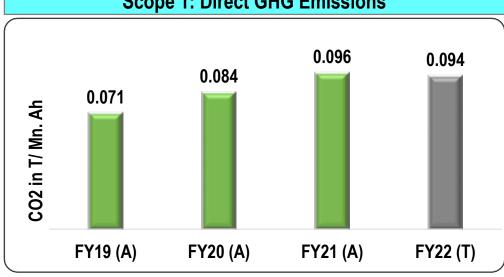

Disposal Action:


for Boilers in Galla Foods (Amara Raja Gr. Co.)

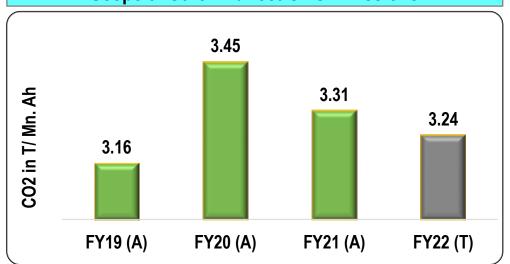
Disposal Action:

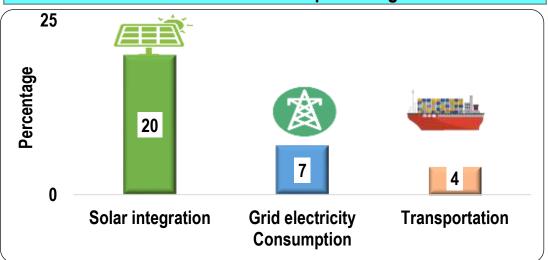
for composting and then for gardening

Way forward To reduce wood consumption



Green House Gas (GHG) Inventorization


Scope 1: Direct GHG Emissions

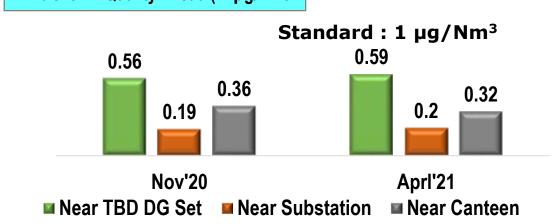

Scope 2: Electricity Indirect GHG Emissions

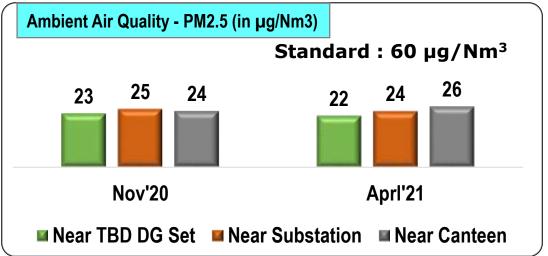
Scope 3: Other Indirect GHG Emissions

GHG emissions reduction percentage FY21

Emissions - Air quality monitoring

Dust extraction system with HEPA Filters

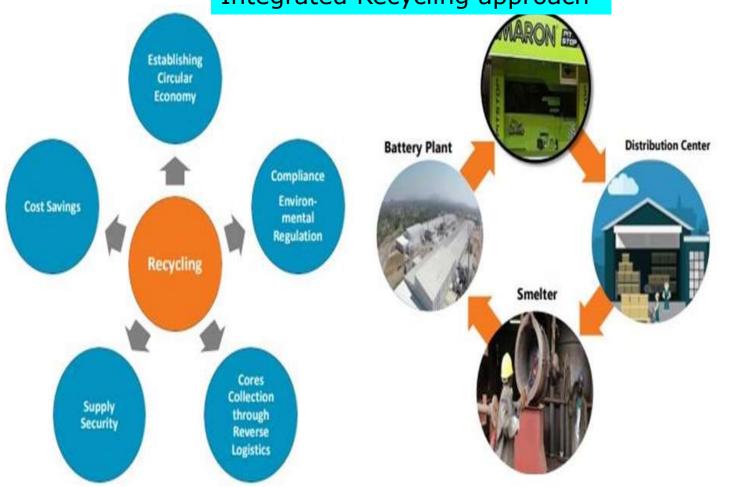

Fume extraction system with Wet Scrubbers



Continuous Ambient Air Quality monitoring Station (CAAQMS)

Ambient Air Quality - Lead (in µg/Nm3

Green Supply Chain management- Key Initiatives FY 20-21


- 1 e-mobility for in-house transportation.
 - 2 Capex approved for Lead recycling plant. 280 Cr
 - Increasing Rail & Ship Transportation
 - 4 Life cycle cost approach in procurement.
 - 5 Procurement of Energy Efficient products/Equipment
- 6 MOU signed with IIT-T for reusable mask

Green Supply Chain

1,00,000 Tonne Capacity Lead recycling plant

Customer Ratings

Ford

Q1 Award – Highest award

Honda

• Satisfactory – Highest rating

Renaults

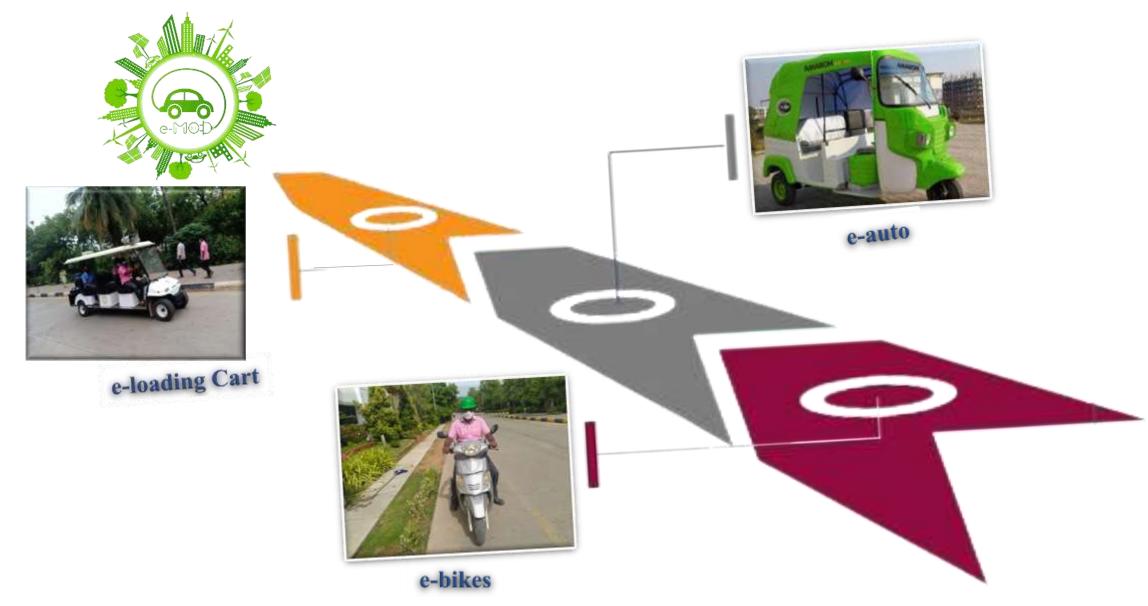
• Excellent – Highest rating

TVS Motors

Platinum – Highest Rating

Mahindra & Mahindra

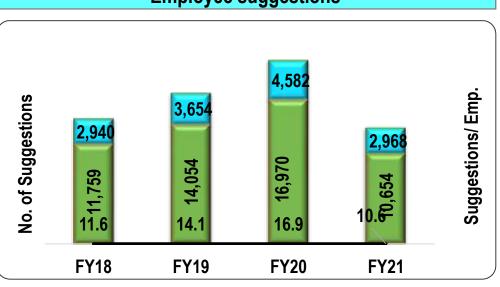
Excellent- Highest Rating

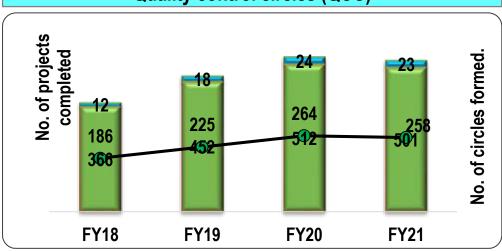

Renault Nissan

• L1 – Highest rating

Inbound e-Vehicle transportation

TEI & Team Work / Operator level

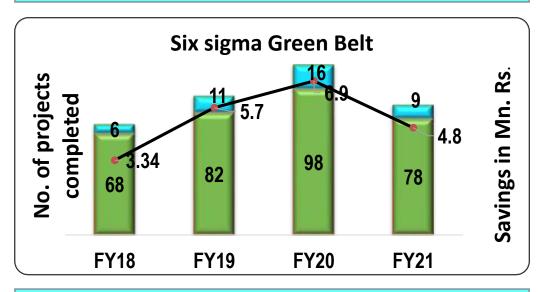

Awareness session


Best QCC Team

Employee suggestions

Quality control circles (QCC)

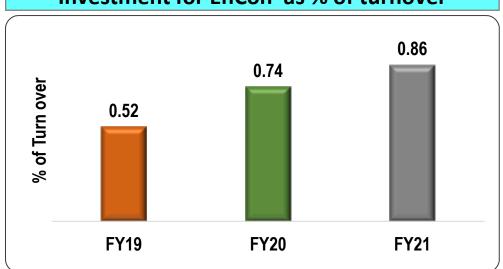

TEI & team work/Supervisor level

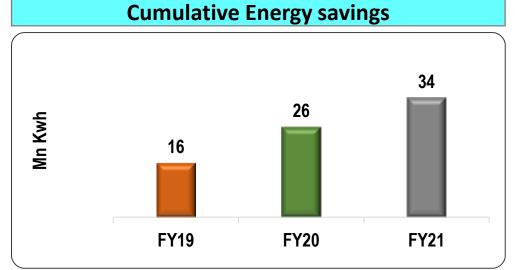

Kaizens

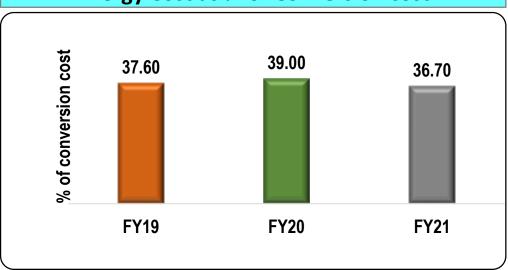

Collecting the data on real time from machine by Using IIOT platform

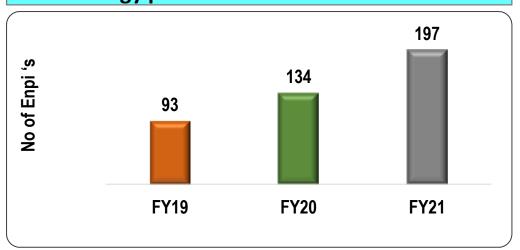
Sis sigma Green Belt projects

Six sigma Black Belt




TEI & team work/Middle Management Level


Investment for EnCon as % of turnover

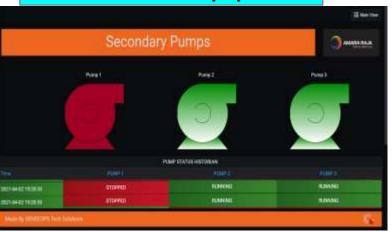

Consoliation Francisco de since

Energy Cost as % of Conversion cost

Energy performance Indicators EnPI's

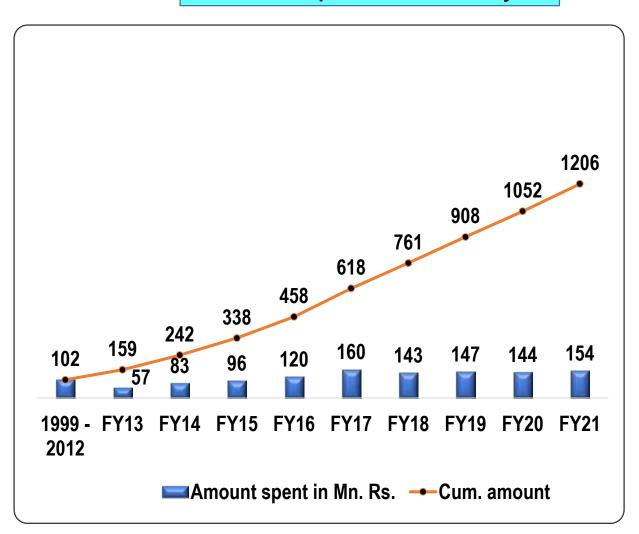
Learnings from the Summit

SI. No	Concept
1	Ductless Air conditioners
2	Tyre pressure and GPS monitoring of vehicles
3	Cycle time for retrieval of spares
4	AHUs with HVLS fans
5	Compressor air leakage checking at defined frequency
6	CNG vehicles for Goods transportation
7	Classification of energy based on fixed and variable loads
8	Hybrid heat pump
9	Six Sigma project for Energy target setting.
10	Office AC accumulator
11	Pneumatic tools replaced with Battery operated.
12	Semi fixed and semi variable loads identification
13	Water pumps to run in non peak hours for demand control.

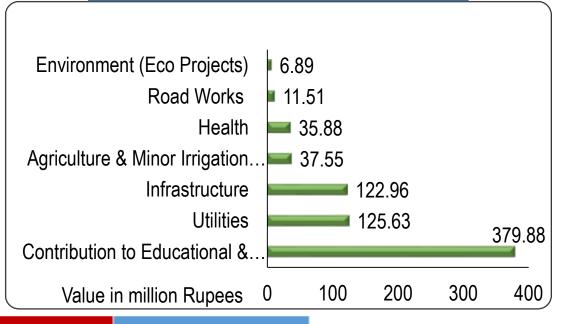


IIOT to enhance our operational efficiency

Dash Boards for Equipments



CSR Initiatives



Amount Spent for CSR Activity

Amount Spent for CSR Activity 3.34 3.03 3.04 2.17 2.4 FY'17 FY'18 FY'19 FY'20 FY'21

CSR - Activity Wise Distribution

CSR Initiatives

o Amara Raja Vidyalayam at Karakambadi

- Social Forestry
- 250 Hectare of barren hillock Adopted
- Planted 2,00,000 trees as on date at Karakambadi

 30 bed primary health centre under PPP Program (Public Private Partnership Program)

- Water conservation
- o Number of projects taken up: Check dams 23, tanks distilled 3
- Benefit reached to :12panchayats, covering 60 villages

CSR Initiatives During Pandemic

Donates Rs. 5cr to AP CM relief fund for Covid relief.

Rs. 1cr to Telangana CM relief fund for Covid relief.

Chittoor: Amara Raja Group donates Covid relief material

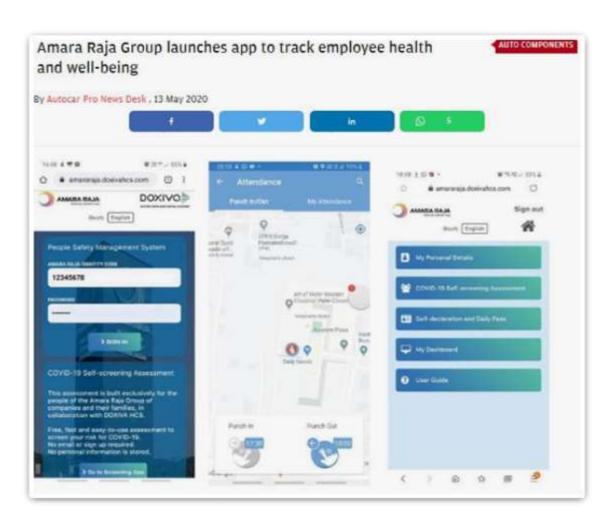
Hans News Service | 4 Jun 2021 12:17 AM IST

Representatives of Amara Raja Industries handing over Rs one crore worth Covid medical items to joint collector (welfare) Rajasekhar (welfare) in Chittoor on Thursday

HIGHLIGHTS

As a token of their support to the district administration fighting against the Covid, the Amara Raja Group of Companies on Thursday donated Rs 1 crore worth of medical items required for Covid patients and also the personnels involved in Covid control in the district

25 Oxygen concentrator donated to Govt. Hospital



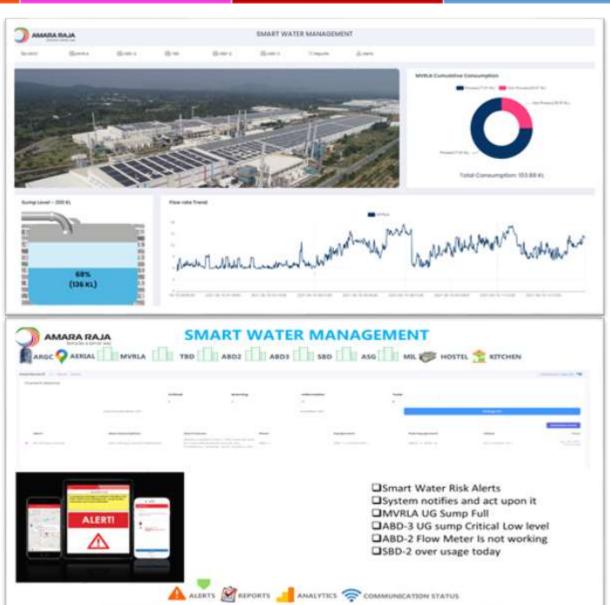
CSR Initiatives During Pandemic

Amara Raja Vaccine Inoculation for employee & their families.

Health Screening Web App as per WHO ¢er for disease control (CDC) Guidelines.

CSR Initiatives During Pandemic

Source: https://www.thehindu.com/news/national/andhra-pradesh/iit-t-amara-raja-sign-mou-on-producing-reusable-face-mask/article33069749.ece/



Water Management

Other Initiatives

Issued 600 no's of **T-Shirts** to the community members on the eve of "World Environment Day"

Issued 1000 no's of Jute Bags to AR Cooperative Stores members on the eve of "World Environment Day"

дана сецами албеја дец

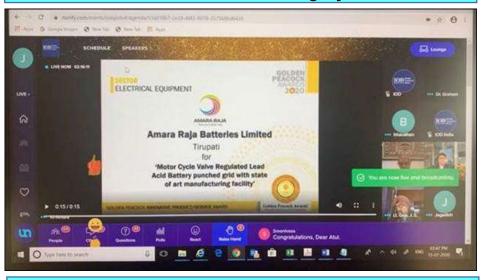
сегубов сесемы е фіф бідштили ділій итетеце ейілі ейуміст адаруля èrdigian pous serçans attayo sussyer phy dissussery so

- bittue peu musquire provint, accouliteu pinning.

Pledge on World Environment Day

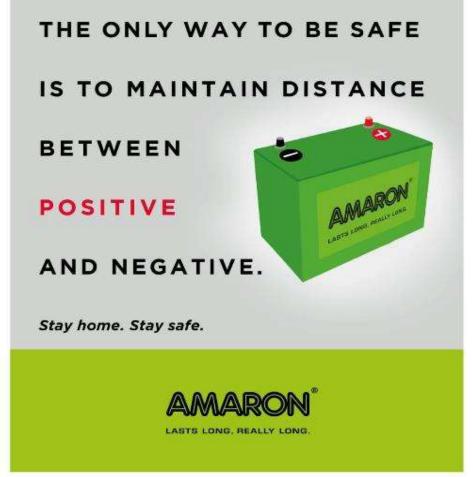
milest treer completes Exercides

Awards and Accolades


Environmental Leadership Award

Platinum award in 6sigma Black Belt

Golden Peacock Award In the Category of Innovation



International Convention on QCC Awards

AMARA RAJA BATTERIES LIMITED I 2010-II ANNUAL REPORT

For feedback

K. B. Vinaya Sagar, Head - Energy management

Email: kbvs@amararaja.com

